Saturday, November 5, 2016

Central Procesing Unit (CPU)

Central processing unit (CPU) adalah sirkuit elektronik dalam komputer yang melakukan instruksi dari program komputer dengan melakukan operasi aritmatika dasar, operasi logika, kontrol dan input / output (I / O) operasi yang ditentukan oleh instruksi. Istilah ini telah digunakan dalam industri komputer setidaknya sejak awal 1960-an. Secara tradisional, istilah "CPU" mengacu pada sebuah prosesor, lebih khusus untuk unit pengolahan dan unit kontrol (CU), membedakan elemen inti dari sebuah komputer dari komponen eksternal seperti memori utama dan sirkuit I / O.

CPU terbagi dalam beberapa komponen utama diantaranya :

SYSTEM BUS
Sistem bus adalah bus komputer yang menghubungkan komponen utama dari sistem komputer, menggabungkan fungsi dari data bus untuk membawa informasi, address bus untuk menentukan di mana ia harus dikirim, dan control bus untuk menentukan operasi. Teknik ini dikembangkan untuk mengurangi biaya dan meningkatkan modularitas, dan meskipun populer pada 1970-an dan 1980-an, komputer yang lebih modern menggunakan berbagai bus yang terpisah disesuaikan dengan kebutuhan yang lebih spesifik. 


  • ADDRESS BUS : Digunakan untuk menandakan lokasi sumber ataupun tujuan pada proses transfer data. Pada jalur ini, CPU akan mengirimkan alamat memori yang akan ditulis atau dibaca.Address bus biasanya terdiri atas 16, 20, 24, atau 32 jalur paralel.
  • DATA BUS : Adalah jalur‐jalur perpindahan data antar modul dalam sistem komputer. Karena pada suatu saat tertentu masing‐masing saluran hanya dapat membawa 1 bit data, maka jumlah saluran menentukan jumlah bit yang dapat ditransfer pada suatu saat. Lebar data bus ini menentukan kinerja sistem secara keseluruhan. Sifatnya bidirectional, artinya CPU dapat membaca dan menirma data melalui data bus ini. Data bus biasanya terdiri atas 8, 16, 32, atau 64 jalur paralel.
  • CONTROL BUS : Control Bus digunakan untuk mengontrol penggunaan serta akses ke Data Bus dan Address Bus. Terdiri atas 4 samapai 10 jalur paralel.

ALU (Arithmatic Logic Unit)
Unit aritmatika logika (ALU) adalah rangkaian digital yang digunakan untuk melakukan operasi aritmatika dan logika. Ini merupakan dasar fundamental dari central processing unit (CPU) dari komputer. CPU modern berisi ALU yang sangat kuat dan kompleks. Selain ALU, CPU modern berisi unit kontrol (CU).

Sebagian besar operasi dari CPU dilakukan oleh satu atau lebih ALU, yang memuat data dari register input. Sebuah register adalah sejumlah kecil penyimpanan yang tersedia sebagai bagian dari CPU. Unit kontrol memberitahu ALU operasi apa yang diperlukan untuk data tersebut itu dan ALU menyimpan hasilnya di output mendaftar. Unit kontrol memindahkan data antara register, ALU, dan memori. 

Contoh operasi aritmetika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR. tugas utama dari ALU (Arithmetic And Logic Unit)adalah melakukan semua perhitungan aritmetika atau matematika yang terjadi sesuai dengan instruksi program. ALU melakukan operasi arithmatika dengan dasar pertambahan, sedang operasi arithmatika yang lainnya, seperti pengurangan, perkalian, dan pembagian dilakukan dengan dasar penjumlahan. sehingga sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi arithmatika ini disebut adder. Tugas lalin dari ALU adalah melakukan keputusan dari operasi logika sesuai dengan instruksi program. Operasi logika (logical operation) meliputi perbandingan dua buah elemen logika dengan menggunakan operator logika, yaitu:
  • sama dengan ( = )
  • tidak sama dengan ( <> ) 
  • kurang dari ( < )
  • kurang dari sama dengan ( <= )
  • lebih dari ( > )
  • lebih dari sama dengan ( >= )
CONTROL UNIT
Unit kendali / Control Unit (CU) adalah salah satu bagian dari CPU yang bertugas untuk memberikan arahan/kendali/ kontrol terhadap operasi yang dilakukan di bagian ALU (Arithmetic Logical Unit) di dalam CPU tersebut. Output dari CU ini akan mengatur aktivitas bagian lainnya dari perangkat CPU.

Pada awal-awal desain komputer, CU diimplementasikan sebagai ad-hoc logic yang susah untuk didesain. Sekarang, CU diimplementasikan sebagai sebuah microprogram yang disimpan di dalam tempat penyimpanan kontrol (control store). Beberapa word dari microprogram dipilih oleh microsequencer dan bit yang datang dari word-word tersebut akan secara langsung mengontrol bagian-bagian berbeda dari perangkat tersebut, termasuk di antaranya adalah register, ALU, register instruksi, bus dan peralatan input/output di luar chip. Pada komputer modern, setiap subsistem ini telah memiliki kontrolernya masing-masing, dengan CU sebagai pemantaunya (supervisor). CU, juga berfungsi untuk bersinkronasi antar komponen.

Tugas CU :
  1. Mengatur dan mengendalikan alat input dan output
  2. Mengatur dan mengendalikan instruksi-instruksi dari memori utama
  3. Mengambil data dari memori utama kalau diperlukan oleh proses
  4.  Mengirim instruksi ke ALU bila ada perhitungan aritmetika atau perbandingan logika serta mengawasi kerja.
  5. Menyimpan hasil proses ke memori utama.
Macam-macam CU :
  1. Single Cycle CU : Proses di CUl ini hanya terjadi dalam satu clock cycle, artinya setiap instruksi ada pada satu cycle, maka dari itu tidak memerlukan state. Dengan demikian fungsi boolean masing-masing control line hanya merupakan fungsi dari opcode saja. Clock cycle harus mempunyai panjang yang sama untuk setiap jenis instruksi. Ada dua bagian pada unit kontrol ini, yaitu proses men-decode opcode untuk mengelompokkannya menjadi 4 macam instruksi (yaitu di gerbang AND), dan pemberian sinyal kontrol berdasarkan jenis instruksinya (yaitu gerbang OR). Keempat jenis instruksi adalah “R-format” (berhubungan dengan register), “lw” (membaca memori), “sw” (menulis ke memori), dan “beq” (branching). Sinyal kontrol yang dihasilkan bergantung pada jenis instruksinya. Misalnya jika melibatkan memori ”R-format” atau ”lw” maka akan sinyal ”Regwrite” akan aktif. Hal lain jika melibatkan memori “lw” atau “sw” maka akan diberi sinyal kontrol ke ALU, yaitu “ALUSrc”. Desain single-cycle ini lebih dapat bekerja dengan baik dan benar tetapi cycle ini tidak efisien.
  2. Multi Cycle CU : Berbeda dengan unit kontrol yang single-cycle, unit kontrol yang multi-cycle lebih memiliki banyak fungsi. Dengan memperhatikan state dan opcode, fungsi boolean dari masing-masing output control line dapat ditentukan. Masing-masingnya akan menjadi fungsi dari 10 buah input logic. Jadi akan terdapat banyak fungsi boolean, dan masing-masingnya tidak sederhana. Pada cycle ini, sinyal kontrol tidak lagi ditentukan dengan melihat pada bit-bit instruksinya. Bit-bit opcode memberitahukan operasi apa yang selanjutnya akan dijalankan CPU; bukan instruksi cycle selanjutnya.
SET REGISTER
Register prosesor merupakan memory yang dapat diakses secara cepat untuk central processing unit (CPU). Register biasanya terdiri dari sejumlah kecil penyimpanan cepat, meskipun beberapa register memiliki fungsi hardware tertentu, dapat berupa read-only atau menulis-hanya. Register biasanya ditangani oleh mekanisme lain dari memori utama, tetapi mungkin dalam beberapa kasus menjadi pemetaan memori.

Register prosesor biasanya berada di bagian atas hirarki memori, dan menyediakan cara tercepat untuk mengakses data. register prosesor biasanya mengacu hanya untuk kelompok register yang secara langsung dikodekan sebagai bagian dari instruksi, seperti yang didefinisikan oleh set instruksi. Namun, CPU modern dengan kinerja tinggi sering memiliki duplikat dari "register arsitektur" dalam rangka meningkatkan kinerja melalui daftar penamaan register, yang memungkinkan eksekusi paralel. desain x86 modern mengakuisisi teknik ini sekitar tahun 1995 dengan rilis dari Pentium Pro, Cyrix 6x86, Nx586, dan AMD K5.

Register dapat diklasifikasikan sebagai berikut :
  • User Accessible Register
  1. Data Register
  2. Address Register
  3. General Purpose Register
  4. Status Register
  5. Floating Point Register
  6. Constant Register
  7. Vector Register
  8. Special Purpose Register
  • Internal Register
  1. Instruction Register
  2. Register yang terhubung dengan informasi dari ram : Memory Buffer Register, Memory Data Register, Memory Address Register

Referensi :
  1. https://en.wikipedia.org/wiki/Central_processing_unit
  2. http://study.com/academy/lesson/arithmetic-logic-unit-alu-definition-design-function.html
  3. https://id.wikipedia.org/wiki/Unit_aritmatika_dan_logika
  4. https://id.wikipedia.org/wiki/Unit_Kendali
  5. https://en.wikipedia.org/wiki/System_bus 
  6. https://en.wikipedia.org/wiki/Processor_register

Friday, November 4, 2016

Arsitektur Set Instruksi

Set Instruksi (bahasa Inggris: Instruction Set, atau Instruction Set Architecture (ISA)) didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung, jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada). Arsitektur set instruksi berbeda dengan mikroarsitektur, yang merupakan sejumlah teknik desain prosesor yang digunakan, dalam prosesor tertentu, untuk menerapkan set instruksi. Prosesor dengan microarchitectures yang berbeda dapat berbagi set instruksi yang sama. Sebagai contoh, Intel Pentium dan AMD Athlon mengimplementasikan versi yang hampir identik dari set instruksi x86, tetapi memiliki desain internal yang berbeda secara radikal.



Klasifikasi Set Instruksi
Ada 2 jenis klasifikasi set instruksi yang utama yaitu :
  1. CISC (Complex Instruction Set of Computing)
  2. RISC (Reduced Instruction Set of Computing)
CISC (Complex Instruction Set of Computing)
CISC (Complex Instruction Set of Computing) adalah desain prosesor dimana instruksi tunggal dapat menjalankan beberapa operasi tingkat rendah (seperti beban dari memori, operasi aritmatika, dan penyimpanan memori) atau mampu menjalankan operasi multi-langkah atau mode pengalamatan dalam instruksi tunggal. Istilah ini surut diciptakan berbeda dengan Reduced Instruction Set of Computing (RISC) dan karena itu telah menjadi sesuatu dari istilah umum untuk segala sesuatu yang bukan RISC, dari komputer mainframe yang besar dan kompleks untuk mikrokontroler sederhana di mana beban memori dan operasional penyimpanan tidak lepas dari instruksi aritmatika.

RISC (Reduced Instruction Set of Computing)
RISC (Reduced Instruction Set of Computing) adalah strategi desain CPU berdasarkan ide bahwa set instruksi yang disederhanakan memberikan kinerja yang lebih tinggi bila dikombinasikan dengan arsitektur mikroprosesor mampu melaksanakan instruksi tersebut menggunakan siklus mikroprosesor yang lebih sedikit per instruksi. [1] Sebuah komputer berdasarkan strategi ini adalah set instruksi komputer berkurang, juga disebut RISC. Arsitektur menentang disebut kompleks set instruksi komputasi (CISC). 

Karakteristik dan Fungsi Set Instruksi
  • Operasi dari CPU ditentukan oleh instruksi-instruksi yang dilaksanakan atau dijalankannya. Instruksi ini sering disebut sebagai instruksi mesin (mechine instructions) atau instruksi komputer (computer instructions). 
  • Kumpulan dari instruksi-instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set Instruksi (Instruction Set).
 Elemen-elemen dari Set Instruksi
  • Operation Code (opcode) : menentukan operasi yang akan dilaksanakan
  • Source Operand Reference : merupakan input bagi operasi yang akan dilaksanakan
  • Result Operand Reference : merupakan hasil dari operasi yang dilaksanakan
  • Next instruction Reference : memberitahu CPU untuk mengambil (fetch) instruksi berikutnya setelah instruksi yang dijalankan selesai.
Design set instruksi merupakan masalah yang sangat kompleks yang melibatkan banyak aspek, diantaranya adalah :
  1. Kelengkapan set instruksi
  2. Ortogonalitas (sifat independensi instruksi)
  3. Kompatibilitas : Source Code Compatibility & Object Code Compatibility
Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction Format).




Jenis Operand
  • Address
  • Numbers : Integer, Floating Point, Decimal
  • Character : ASCII, EBCDIC
  • Logical Data
Jenis Instruksi
  • Data processing: Arithmetic dan Logic Instructions
  • Data storage: Memory instructions
  • Data Movement: I/O instructions
  • Control: Test and branch instructions
Jenis Addressing Mode (Teknik Pengalamatan)
  1. Immediate
  2. Direct
  3. Indirect
  4. Register
  5. Register Indirect
  6. Displacement
  7. Stack
 Immediate Addressing
- Pengalamatan yang paling sederhana.
- Operand benar-benar ada dalam instruksi atau bagian dari intsruksi
- Operand sama dengan field alamat
- Umumnya bilangan akan disimpan dalam bentuk complement dua
- Bit paling kiri sebagai bit tanda
- Ketika operand dimuatkan ke dalam register data, bit tanda digeser ke kiri hingga maksimum word data

Keuntungan :
- Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand
- Menghemat siklus instruksi sehingga proses keseluruhanakan akan cepat

Kekurangan :
- Ukuran bilangan dibatasi oleh ukuran field

Contoh :
- ADD 7 ; tambahkan 7 pada akumulator

Direct Addressing
- Teknik ini banyak digunakan pada komputer lama dan komputer kecil
- Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulus khusus

Kelebihan :
- Field alamat berisi efektif address sebuah operand

Kekurangan :
- Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word

Contoh :
- ADD A ; tambahkan isi pada lokasi alamat A ke akumulator

Indirect Addressing
- Merupakan mode pengalamatan tak langsung
- Field alamat mengacu pada alamat word di alamat memori, yang pada gilirannya akan berisi alamat operand yang panjang

Kelebihan :
- Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi

Kekurangan :
- Diperlukan referensi memori ganda dalam satu fetch sehingga memperlambat proses operasi

Contoh :
- ADD (A) ; tambahkan isi memori yang ditunjuk oleh isi alamat A ke akumulator


Register Addressing
- Metode pengalamatan register mirip dengan mode pengalamatan langsung
- Perbedaanya terletak pada field alamat yang mengacu pada register, bukan pada memori utama
- Field yang mereferensi register memiliki panjang 3 atau 4 bit, sehingga dapat mereferensi 8 atau 16 register general purpose

Keuntungan :
- Diperlukan field alamat berukuran kecil dalam instruksi dan tidak diperlukan referensi memori
- Akses ke register lebih cepat daripada akses ke memori, sehingga proses eksekusi akan lebih cepat

Kerugian :
- Ruang alamat menjadi terbatas
Register Indirect Addressing
Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung
- Perbedaannya adalah field alamat mengacu pada alamat register
- Letak operand berada pada memori yang dituju oleh isi register
- Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung
- Keterbatasan field alamat diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak
- Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung
Displacement Addressing
- Menggabungkan kemampuan pengalamatan langsung dan pengalamatan register tidak langsung
- Mode ini mensyaratkan instruksi memiliki dua buah field alamat, sedikitnya sebuah field yang eksplisit
- Operand berada pada alamat A ditambahkan isi register
Tiga model displacement
- Relative addressing : register yang direferensi secara implisit adalah Program Counter (PC)
- Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat
- Memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya
Base register addressing : register yang direferensi berisi sebuah alamat memori dan field alamat berisi perpindahan dari alamat itu
- Referensi register dapat eksplisit maupun implisit
- Memanfaatkan konsep lokalitas memori
Indexing  : field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut
- Merupakan kebalikan dari mode base register
- Field alamat dianggap sebagai alamat memori dalam indexing
- Manfaat penting dari indexing adalah untuk eksekusi program-pprogram iteratif

Contoh :
- Field eksplisit bernilai A dan field imlisit mengarah pada register
Stack Addressing
- Stack adalah array lokasi yang linier = pushdown list = last-in-firs-out
- Stack merupakan blok lokasi yang terbaik
- Btir ditambahkan ke puncak stack sehingga setiap blok akan terisi secara parsial
- Yang berkaitan dengan stack adalah pointer yang nilainya merupakan alamat bagian paling atas stack
- Dua elemen teratas stack dapat berada di dalam register CPU, yang dalam hal ini stack pointer mereferensi ke elemen ketiga stack
- Stack pointer tetap berada dalam register
- Dengan demikian, referensi-referensi ke lokasi stack di dalam memori pada dasarnya merupakan pengalamatan register tidak langsung. 


Referensi :
  1. https://en.wikipedia.org/wiki/Instruction_set
  2. https://en.wikipedia.org/wiki/Complex_instruction_set_computing
  3. https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
  4. http://www.slideshare.net/Henniheny/set-instruksi-27850098